Convergence Almost Everywhere of Operator Averages
نویسندگان
چکیده
منابع مشابه
Almost Everywhere Convergence of Series in L
We answer positively a question of J. Rosenblatt (1988), proving the existence of a sequence (ci) with ∑∞ i=1 |ci| = ∞, such that for every dynamical system (X,Σ, m, T ) and f ∈ L1(X), ∑∞i=1 cif(T ix) converges almost everywhere. A similar result is obtained in the real variable context.
متن کاملAlmost Everywhere Convergence of Riesz Means Related to Schrödinger Operator with Constant Magnetic Fields
and Applied Analysis 3 Lemma 4. For λ > 0, one has K δ,l,j λ f (x) 2 2 ≤ C2 −2M(j+l) δ 2Mf 2 2 , (19) where the constant C is independent of λ and δ. Proof. With the method similar to the proof of Lemma 4 in [9], we write h(t) = φ(t) − φ(2t) and expandm into a Taylor series around λt. Then, ?̂? δ,l,j λ (t) = ∫m δ (λ(t − 2 −(j+l) δ 2 r λ )) ĥ (r) dr = ∫m δ (λt − 2 −(j+l) δ 2 ...
متن کاملAlmost Everywhere Convergence of Orthogonal Expansions of Several Variables
For weighted L space on the unit sphere of R, in which the weight functions are invariant under finite reflection groups, a maximal function is introduced and used to prove the almost everywhere convergence of orthogonal expansions in h-harmonics. The result applies to various methods of summability, including the de la Vallée Poussin means and the Cesàro means. Similar results are also establi...
متن کاملOn Almost Everywhere Strong Convergence of Multidimensional Continued Fraction Algorithms
We describe a strategy which allows one to produce computer assisted proofs of almost everywhere strong convergence of Jacobi-Perron type algorithms in arbitrary dimension. Numerical work is carried out in dimension three to illustrate our method. To the best of our knowledge this is the rst result on almost everywhere strong convergence in dimension greater than two.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 1956
ISSN: 0022-2518
DOI: 10.1512/iumj.1956.5.55003